

A Corrected Algorithm for Computing the

Theoretical Auto-Covariance Matrices of a

Vector ARMA Model

José Alberto Mauricio

Universidad Complutense de Madrid

──────────

Abstract: The algorithm of Kohn and Ansley (1982) is reconsidered here, in order to correct several

implementation errors concerning the construction of the linear equations that must be solved for

computing the theoretical auto-covariance matrices of a vector ARMA model. This note presents a

concise description of the corrected algorithm.

Resumen: En esta nota se corrigen algunos errores del algoritmo de Kohn y Ansley (1982), que tienen

que ver con la construcción de un sistema de ecuaciones lineales para calcular las matrices de auto-

covarianzas teóricas de un modelo ARMA multivariante.

──────────

Working Paper 9502

Instituto Complutense de Análisis Económico (�ICAE�)

March 1995

1

1. INTRODUCTION

 Consider a stationary vector time-series process …, W−1, W0, W1, … of dimension m�≥�2 (with

Wt�=�[Wt1,�…,Wtm]T�) following the vector ARMA(�p,�q�) model

 1 1 2 2 1 1 2 2t t t p t p t t t q t q             W W W W A A A A          , (1)

where E[]i i i W W W , 1 ,..., p  and 1 ,..., q  are m×m parameter matrices, and …, A−1, A0,

A1, … is a sequence of IID(�0,�Σ�) m×1 random vectors with Σ (m×m) symmetric and positive definite.

 Let the theoretical “auto-covariance” matrix (m×m) of order k�∈�ℤ be defined as

 T TE[] E[]k t t k t k t  W W W W     .

 Then, transposing and premultiplying (1) by t kW , and taking expectations, it is easily verified

that

 T T

1 1

p q

k k i i k k j j
i j

 
 

         , (2)

where T TE[] E[]i t t i t i t  W A W A   is the theoretical “cross-covariance” matrix (m×m) of order k.

 The theoretical auto-covariance and cross-covariance matrices of various orders are needed, for

example, to compute the objective function during exact maximum likelihood estimation of (1) (see,

among others, Hall and Nicholls 1980, Shea 1989, and Mauricio 1995). Other applications include the

generation of independent realizations from a vector ARMA model (see, for example, Shea 1988), which

is particularly useful in simulation studies. Thus, as Kohn and Ansley (1982) point out, it is important to

have a fast method of obtaining those matrices, since they are recalculated many times during both

estimation and simulation runs.

 The method of Kohn and Ansley (1982) provides a fast means of computing the auto-covariance

matrices. In particular, it is faster than the methods of Hall and Nicholls (1980) and Ansley (1980).

However, the implementation in the algorithmic section of Kohn and Ansley (1982, pp. 278-279) is

incorrect. In particular, the guidelines on the construction of the linear equations that must be solved to

compute Γ0 through Γp−1 are wrong. A corrected version of that algorithm, based on the theoretical

background of Section 2, is presented in Section 3. The construction of both the matrix and the right-

hand-side vector of the system of linear equations for the first p auto-covariance matrices is described in

2

detail. Some further comments in Section 4 complete this note.

2. THEORETICAL BACKGROUND

 In order to motivate the algorithm of Section 3, a concise summary of the method proposed by

Kohn and Ansley (1982), using the notation introduced in Section 1, is given now. In the first place,

postmultiplying (1) by T
t iA , taking expectations, and noting that T TE[] E[]t i t t t i  W A A A 0 for

i�≥�1, it can be verified that

1

for 1
p

i i j j i
j

i 


       , (3)

where Θi�=�0 for i�>�q, Λ0�=�Σ, and Λk�=�0 for k�>�0. Then, writing out (2) for k�=�0 and for k�≥�1,

 T T
0 0

1 1

p q

i i j j
i j

 
 

         , (4)

 T

1
for 1

p

k k k j j
j

k


  C   , (5)

where T for 1
q

k k j j
j k

k


 C   . (6)

 Now, noting that T T TE[] E[]i t t i t i t i    W W W W     , and putting (5) with k replaced by i

into (4), it turns out that

 T
0 0

1 1

p p

i i j j
j i


 

   C    , (7)

where T T
0

1
()

q

j j
j

    C B B   (8)

and T

1

p q

i i j j
i j i


 

  B    . (9)

 Finally, since T
k k   , it can be verified that when (5) and (6) are written for k = 1, 2, …,

p−1, only Γ0 through Γp−1 and Λ0 through Λ−q+1 appear in equations (5) through (9). Thus, given Λ0

through Λ−q+1, the following system of linear equations may be specified in order to calculate Γ0

3

through Γp−1:

  
1

T T TT
0 0 0

1 1 1

p p p i

i j i j j i i ji i
i i j

 

 
  

     C         , (10)

1

T T T

1 0
for 1,..., 1

k p k

k i k i i k i k
i i

k p
 

 
 

      C     . (11)

 Together, equations (10) and (11) form a system of pm2 linear equations with pm2 unknowns (the

m2 elements of each of the p matrices Γ0, Γ1, …, Γp−1. But since Γ0 is symmetric, it contains only

m(m+1)/2 distinct elements. Thus, letting 0
 and 0C be the diagonals and upper triangles of Γ0 and

C0, respectively, the m(m+1)/2 + m2(�p−1) unknowns in (10) and (11) are the (unique) solution x to the

linear system Ax = b, where x = vec[0
 , Γ1, …, Γp−1], b = vec[0C ,C1, …, Cp−1], and A is the

matrix of coefficients, which (together with b) is constructed as described in the next section.

3. THE CORRECTED ALGORITHM

 In order to concentrate on the more relevant aspects of the algorithm (the construction of A and b),

it is assumed that Λ0 and Λ−1 through Λ−q+1, as well as 0C , have already been computed using (3), (8)

and (9). Now, it is shown how to construct A and b row by row. First, initialize A and b to zero; then,

execute the following two steps:

Step 1. Compute the first m(m+1)/2 rows:

FOR j = 1 TO m

 FOR i = 1 TO j

 row = j×(��j−1)�/�2 + i

 Step 1.1. Compute the first m(m+1)/2 columns within row:

 FOR l = 1 TO m

 FOR k = 1 TO l

 col = l×(l−1)�/�2�+�k

 IF k = l

4

1

(,) (,) (,)
p

r r
r

row col i k j l


 A  

 ELSE

1

(,) (,) (,) (,) (,)
p

r r r r
r

row col i k j l i l j k


     A    

 Step 1.2. Compute the remaining m2(�p−1) columns within row:

 FOR s = 1 TO p−1

 FOR l = 1 TO m

 FOR k = 1 TO m

 col = m×(m+1)�/�2 + m2×(s−1) + m×(l−1) + k

1

(,) (,) (,) (,) (,)
p s

r s r r s r
r

row col i k j l j k i l


 


      A    

 Step 1.3. Set up diagonal of A and right-hand-side b:

 A(row, row) = 1 + A(row, row)

 b(row) = 0(,)i jC

Step 2. Compute the remaining m2(�p−1) rows:

FOR s = 1 TO p−1

 FOR i = 1 TO m

 FOR j = 1 TO m

 row = m×(m+1)�/�2 + m2×(s−1) + m×(i−1) + j

 Step 2.1. Compute the first m(m+1)/2 columns within row:

 FOR l = 1 TO m

 IF l ≤ j

 col = j×(j−1)�/�2 + l

 ELSE

 col = l×(l−1)�/�2 + j

 A(row, col�) = −Φs(�i,�l�)

5

 Step 2.2. Compute the remaining m2(�p−1) columns within row:

 FOR r = 1 TO p−1

 FOR l = 1 TO m

 col = m×(m+1)�/�2 + m2×(r−1) + m×(j−1) + l

 IF r + s ≤ p

 A(row, col�) = −Φr+s(�i,�l�)

 IF s > r

 col = m×(m+1)�/�2 + m2×(r−1) + m×(l−1) + j

 A(row, col�) = A(row, col�) − Φs−r�(�i,�l�)

 Step 2.3. Set up diagonal of A and right-hand-side b:

 A(row, row) = 1 + A(row, row)

 FOR h = s TO q

1

() () (,) (,)
m

s h h
k

row row j k i k


  b b  

END.

 Once A and b are constructed, the solution x = A−1b may be obtained using standard numerical

linear algebra routines (see, for example, Moler 1972, and Press et al. 1992). Then, the elements of the

theoretical auto-covariance matrices can be extracted from x as follows:

2

0 (1)/2

(1)/2 (1) (1)

(,) (1,..., ; ,...,),

(,) (, 1,..., ; 1,..., 1).

j j i

k m m m k m j i

i j i m j i m

i j i j m k p
 

     

  

   

x

x





 For k ≥ p, the auto-covariance matrices can be computed recursively using (5), (6) and (3).

4. CONCLUDING REMARKS

 Note that, except for the first m(m+1)/2 coefficients in each of the first m(m+1)/2 rows of A (Step

1.1 above), the implementation presented here differs from that of Kohn and Ansley (1982), which is

incorrect. To check this, computer programs were written by the author, following the implementation in

6

Kohn and Ansley (1982) and the one described in Section 3. The theoretical auto-covariance matrices,

calculated through the implementation in Kohn and Ansley (1982) for a wide range of vector ARMA

models, always showed substantial differences with the results obtained through the implementation

described here. Furthermore, the latter results always agreed with those obtained through standard

procedures, such as that of Hall and Nicholls (1980) as implemented in Shea (1989).

REFERENCES

Ansley, C. F. (1980), “Computation of the Theoretical Autocovariance Function for a Vector ARMA

Process,” Journal of Statistical Computation and Simulation, 12, 15-24.

Hall, A. D. and Nicholls, D. F. (1980), “The Evaluation of Exact Maximum Likelihood Estimates for

VARMA Models,” Journal of Statistical Computation and Simulation, 10, 251-262.

Kohn, R. and Ansley, C. F. (1982), “A Note on Obtaining the Theoretical Autocovariances of an ARMA

Process,” Journal of Statistical Computation and Simulation, 15, 273-283.

Mauricio, J. A. (1995), “Exact Maximum Likelihood Estimation of Stationary Vector ARMA Models,”

Journal of the American Statistical Association, 90, 282-291.

Moler, C. B. (1972), “Algorithm 423: Linear Equation Solver,” Communications of the Association for

Computing Machinery, 15, 274.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P (1992), Numerical Recipes in C

(2nd edition), Cambridge: Cambridge University Press.

Shea, B. L. (1988), “A Note on the Generation of Independent Realizations of a Vector Autoregressive

Moving-Average Process,” Journal of Time Series Analysis, 9, 403-410.

Shea, B. L. (1989), “Algorithm AS 242: The Exact Likelihood of a Vector Autoregressive Moving-

Average Model,” Applied Statistics, 38, 161-204.

